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Abstrnci In this paper, we develop a new method of spin operator transformation for an 
easyplane spin-one ferromagnet: 

H = -J  E S i  . Sj + D E(S;)’- k Est. 
B.1) i 1 

The ground-state energy EO. the magnetization M and the magnon dispersion relation U are 
calculated analytically, and tk mntrast with other methods and numerical results are given. 

Crystal-field anisotropy plays an important role in the thermodynamic properties of magnetic 
systems with spin greater than one half [I]. In this paper we consider an easy-plane spin- 
one ferromagnet at T = 0. It represents a non-trivial system with single-ion anisotropy 
( D C i ( S f ) 2 ) .  In these systems, even non-interacting spin wave theory is not trivial, owing 
to the diagonal effects of the anisotropy on single-ion energy levels. For instance, a naive 
use of the well ordered Holstein-Primakoff transformation (H-P transformation) lead to an 
imaginary value for the energy of the k = 0 mode [2]. To overcome these difficulties, 
the matching of metrics elements method (the MME method) was introduced in 1974 [3]. 
From then on, many applications [2, 4 6 1  of this method have been implemented, making 
it possible to examine the easy-plane ferromagnetic systems. In 1990, surface spin waves 
in these systems were discussed using Green’s function method [7]. 

In reviewing these papers, one may find that the MME method can give a very 
good magnon dispersion relation in the case of small anisotropy, but its magnetization 
is quite different from the numerical result [SI. In this paper, we try to introduce a new 
transformation method, the so-called characteristic angle (CA) spin-operator transformation 
method, to deal with such systems. The main point in our method is that an angle, CA, 
is introduced to optimize the magnetized direction which will be used in the Holstein- 
Primakoff transformation. In fact, the angle is a variation parameter which is fixed by 
minimizing the ground-state energy. Using our method, we can not only get a good magnon 
dispersion relation, which is same as the one in hlME method, but also more reasonable 
ground-state energy and magnetization. 

The Hamiltonian is given as 
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where (i, j) means summation restricted to the nearest-neighbour pairs, and h is the external 
magnetic field along the Z axis, used here to determine.the magnetization of this system. 
The spins will be forced into the YZ plane by the anisotropy term ( D  > 0). The Hamiltonian 
(1) can be rewritten as 

Lei Zhou and Ruibao Tu0 

H = -.I x ( S f S j  + q S 7 )  + (D/4 )  E(Sf.7: + S;S: +C.C.) - h x S f .  (2 )  
( i d  i 

We introduce the following CA spin-operator transformation for S = 1: 

S: =coseS,? + sineSyexp(ixSj) (3) 

S; =coseS; +sineexp(-izS$,? (4) 

Sf = $7, SJ-. (51 

Here (j;, i,?, &) is a set of CA spin operators which obey the usual angular momentum's 
commutation mies, and e is the characteristic angle which will be determined later. In 
the appendix, we proove that the transformation (3)-(5) does not affect the commutation 
relations of operators (S,:, ST, Si). In fact, the transformation just means a kind of rotation 
in the spin space. After the transformation, the Hamiltonian can be presented by new spin 
operators (S;, 3;. 3;) as folIows: 

Let us define a ground state 10) by 
3f10) = IO), q o )  = 0. 

The meaning of (9) is that the new spins will point along the direction described by 
choosing the angle t? for decreasing the ground-state energy as low as possible. The H-P 
transformation is introduced for ($, 27, 3:) 

It is very tedious to write down the expansions of all the terms in expressions (7) and 
(8) when applying the H-P transformation; we will only give one of them since the others 
are similar. For example, some terms in If,? are found to be proportional to 

Sf exp(inSf) + exp(-inSf)$ 
= - exp(-ixa:ai) +.?ai exp(-inai+ai) - exp(ina:a,) + exp(iaa:a;)a:ai 
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According to Wick's theorem, 

(n:ut)" = N[(U:~,)~] + (n - l)!N[(a:ui)"-'] + . . . +u:u, 

3: exp(in$) + exp(-irrS$: = -2+ h+ai +. . . . 

(14) 

(15) 

where N [ A  B . . Cl means the normal product of operators A, B ,  . . . , C. Then 

Other terms can be calculated similarly. After carefully calculating all the terms in (6) and 
(7) and keeping only the quadratic-order approximation, we obtain 

x((di/4)Dcos28 - (&/2)hsin28)(a: +c.c.)] (18) 

Using the Fourier transformation of the Bose operators, we convert the Hamiltonian to 
where Ho is the Hamiltonian given in the mean-field (m) theory. 

the form 

H = Ho 4- A t U Z f Z k  4- Bk(U?U?k + UkU-k) (19) 

Ak =2JZ(cos228-yk)+(D/2)sin28f D / 2 + h c o ~ 2 8  (20) 
& =(di /2) [ -JZsin4e+(D/2)cos2e-hs in~0~+ JZsin28yx (21) 

n = ( 1 / z ) c e x p ( i k . n )  (22) 

k k 

where 

S 

and Z in equation (22) is the number of nearest-neighbour sites; the S summation runs 
over Z nearest-neighbour sites. Hamiltonian (19) can be diagonalized by the Bogolyubov 
transformation: 

H = EO + 6kak+(Yk (23) 
k 

ek = , /A :  - 48;. (25) 

We understand that our CA 6'0 is the angle at which the ground-state energy E&,) takes 
the minimum value. To determine it, we calculate EO as a function of sin28 numerically 
with different values of the parameter d = D/4JZ. In any case, we are interested in finding 
that the CA 00 always satisfy the following equation: 

(26) 
d 

-Ho(8) = (JZsin48 - (D/2)cos28 - hsin28)N =O. 
d0 

In other words, 

sin280 = d = D/4JZ. 
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Figure 1. Energy as a function of sin28 ford = 0.1. Figure 2. Energy as a function of  sin28 ford = 0.6. 

As an example, the cases of d = 0.1 and d = 0.6 are shown in figure 1 and figure 2; the 
values of sin280 are found to be 0.1 and 0.6, respectively. 

Let us define: 
We will now give a rough explanation. 

A(@) = (1/2JZ)'[A:(e) - 4B;(e)llk=o 
= ( d + s i n Z ( d  - sin2))'- (sin28 +&cosZ(d -sin28))'. (28) 

From equation (U), we find 

€0 = 2 J Z m .  

Obviously, 

A.(@) 2 0 

is a restriction for our calculations. 

eo = sin-' d, we get 
Now differentiate A(8) and i J Z ) E o ( 8 )  with respect to 8 and substitute 8 with 

In figure 3,  D(d )  and F(d) are drawn together. It is easy to show that the two 
differentials always have the same sign, which means A(8) and E&) always have the 
same varying tendency at a point 80. In the case where two differentials are both positive, 
A(8) will increase when e becomes larger. Noticing that in equation (28) A(&) = 0, 
constraint (30) must require 8 2 80, otherwise A(@) becomes negative. Since Eo(@) is also 
an increasing function of 8 at the point 80, the requirement 0 2 80 tells us that E,(&) is 
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Figure 3. Comparison of two differentials 

the minimum value of E&') in the region of 8 - 00. The situation is similar in the case of 
F(d)  and D ( d )  being both negative. 

Of course, this is an explanation rather than a proof, but at least we may get some 
general understanding of the result kom the discussions above. 

Applying the solution (27) to (23H2.5) for h = 0, we obtain the ground-state energy 
EO, the magnetization M and the magnon dispersion relation e t ,  

(33) 

(34) 

Eo = J Z x [ - 2 + d  -dZ  + ~ a  +J(1 + d  - n)' - (dyx)'] 
k 

o(h)lk=O = M M F  + A M  
I d  
N dh 

M =  - - - E  

= ZJZJ(1i d - Y# - (dn)'  
where M M F  is the result of the mean-field calculation 

(35) 

(36) 
and 

It is easy to show that the excitation energy e~ + 0 as k --f 0. 
Equations (33>-(37) are the analytical results of our method. However, the MME method 

gave 121 

= ZJZJ(1 + d  - pJ2 - (drk)*. (40) 
In figure 4, the numerical result (Mm,  Ma)  obtained by our method and M m  as a 
function of d are shown together for simple cubic lattice. Comparing our method with the 
MME method and the numerical result, we find 

(1) our ground-state energy E:* is lower than E r E ,  
(2) our magnetization MCA is much better than M m  (figure 4). Except in the vicinity 

of the phase transition point, our M a  is very close to the numerical result although MMME 
is not. 
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Figum 4. Magnelizations of easy-plane spin-one ferromagnetic simple cubic lattice system as 
a function of D/432. 

(3) our excitation energy E;* is the same as ckmE. 
To summarize. we have introduced a new method of spin-operator transformation for 

easy-plane spin-one ferromagnetic systems. The ground-state energy EO. the magnetization 
M and the magnon dispersion relation EX are calculated analytically. A comparison with 
the matching of metrics elements method [3] (the MME method) and numerical calculation 
are given. 

Appendix 

In this appendix, we will prove that the transformation (3H.5) does not affect the usual 
commutation relations of (sj’. s;. S j ) .  

According to the transformation 

s,’ = c o s ~ j j ’  +sine$exp(irrSj) (AI) 

S; = c o d ;  + sineexp(-iz$)3? ( A 3  

sj = irsj’, STl- (A3) 

the matrix forms of Sj’ gnd 3: in the 3j representation are found to be: 

p,=(o 0 4 5  0 Jz) 0 

0 0  0 

in which Im) (m = 1,2,3) are the complete set of eigenfunctions of sz with eigenvalues 1, 
0 and -1. 

It is easy to check the truthfulness of the equation 

s+ = 7++s+7 (A@ 
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in which 
cos8 0 sine 

-sine 0 cos0 

7+7 = 77+ = I .  

Equations (A8) and (A9) show that 7 is a unitary transformation matrix. Since operators 
(Si , S, , 5;) obey the usual angular momentum commutation rules, and since a unitary 
transformation does not affect the matrices commutation relations, the operators (S,', S,:. 
S?) must obey the usual angular momentum commutation rules as well. 

We have thus completed the proof that our transformation equations (AlHA3) do not 
affect the commutation relations of spin operators. 

-+ -_ 
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